Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles.
نویسندگان
چکیده
Ni-rich Li-based layered Ni, Co, and Mn (NCM) materials have shown tremendous promise in recent years as positive electrode materials for Li-ion batteries. This is evident as companies developing batteries for electrical vehicles are currently commercializing these materials. Despite the considerable research performed on LiNiαCoβMnγO2 systems, we do not yet have a complete atomic level understanding of these materials. In this work we study the cationic ordering, thermodynamics, and diffusion kinetics of LiNi0.5Co0.2Mn0.3O2 (NCM-523). Initially, we show that cationic ordering can be predicted employing cheap atomistic simulations, instead of using expensive first-principles methods. Subsequently, we investigate the electrochemical, thermodynamic and kinetic properties of NCM-523 using density functional theory (DFT). Our results demonstrate the importance of including dispersion corrections to standard first principles functionals in order to correctly predict the lattice parameters of layered cathode materials. We also demonstrate that a careful choice of computational protocol is essential to reproduce the experimental intercalation potential trends observed in the LiNi0.5Co0.2Mn0.3O2 electrodes. Analysis of the electronic structure confirms an active role of Ni in the electrochemical redox process. Moreover, we confirm the experimental finding that on complete delithiation, this material remains in an O3 phase, unlike LiCoO2 and NCM-333. Finally, we study various pathways for the Li-ion diffusion in NCM-523, and pinpoint the preferred diffusion channel based on first principles simulations. Interestingly, we observe that the Li diffusion barrier in NCM-523 is lower than that in LiCoO2.
منابع مشابه
SnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries
Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...
متن کاملTheoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملElectrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملElectrochemical Evaluation of PbO Nanoparticles as Anode for Lithium Ion Batteries (Technical Note)
PbO nanoparticles were synthesized using hydrothermal process. Scanning electron microscopy (SEM) was used in order to investigate of PbO powders. X-ray diffraction (XRD) pattern confirmed β-PbO formation during this process. The crystallite size of the powders was calculated using Scherrer formula about 74.6 nm. Electrochemical evaluation of the PbO nanoparticles as anode for Li-ion batteries ...
متن کاملInitial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries
Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 9 شماره
صفحات -
تاریخ انتشار 2016